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ABSTRACT

A Cauchy flux q is a real-valued, additive, area-bounded

function whose domain is the class of all Borel subsets of the

reduced boundary of sets of finite perimeter. If the flux Q is

also volume bounded, it is shown that Q, can be represented as

the integral of the normal component of some vector field.
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SIGNIFICANCE AND EXPLANATION

Balance laws of the form

(.) _ Et(B) = 0 (BB e )

dt t t

are basic to classical physics. For example, (*) represents

balance of energy for a rigid heat conductor provided Et(B) is

the internal energy of B and Qt(B,Be) is the heat flow into

B from its exterior Be. Fundamental axioms of continuum

physics require that (*) holds for any subbody A of B and

that Qt(A,C) be well-defined for A and C in a suitably

large class of sets. It is shown that Ot can be represented as

a flux over the reduced boundaries of sets of finite perimeter,

thus showing that sets of finite perimeter form the suitably

large class of sets in which it is possible to establish an

axiomatic development of continuum physics.
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CAUCHY FLUX AND SETS OF FINITE PERIMETER

William P. Zeimer*

1. Introduction. Balance laws of the form

de

(1) d-t Et(B) = Qt(B 'Be )

are basic to classical physics. For example, (1) represents

balance of energy for a rigid heat conductor provided Et(B)

e
is the internal energy of B and Qt(B,Be ) is the heat

flow into B from its exterior Be Also, (1) represents

balance of momentum if E t(B) is the momentum of B and

e e
Qt(B,B ) is the force exerted on B by its exterior B

Fundamental axioms of continuum physics require that (1)

holds, not only for B , but for any subbody A of B and

that Qt(A,C) be well-defined for any pair (A,C) where A

is a body, C is a body or the exterior of a body, and A

and C are separate in the sense that they intersect at

most along their boundaries.

The determination of the appropriate class of sets for

the family of subbodies is fundamental in the axiomatic

development of continuum physics. Indeed, first considera-

tions require that the family of subbodies be closed under

intersection and union, that the concept of separate sub-

bodies be meaningful, and that the boundary of a subbody be

sufficiently regular to facilitate the basic operations of

analysis. In particular, the boundary must have a general

(and useful) notion of exterior normal. If domains with

*Department of Mathematics, Indiana University, Bloomington,
IN 47405

Sponsored by the United States Army under Contract No. DAAG29-80-
C-0041. Supported in part by a grant from the National Science
Foundation.
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piece-wise smooth boundaries are considered as the family of

subbodies, inconsistencies appear in the axiomatic structure.

In work that is currently being developed by Morton E.

Gurtin, William 0. Williams, and the author, it is shown that

the class generated by sets of finite perimeter (see §2

below) provides the appropriate context for the axiomatic

development of continuum physics. In that work it is shown

that there is a function q such that

(2) Q(A,C) = j q(x)dH n-l(x)

S

where S = A n C is the surface of contact between A and

C . In the classical context, Cauchy assumed that q in

(2) depends on S only through the normal at x . Noll [N]

has shown that Cauchy's assumption actually follows from the

general balance law (1) under reasonable assumptions.

In this paper we will establish Noll's theorem in the

more general framework of sets of finite perimeter. This

result is of independent mathematical interest and is inti-

mately related to the flat forms and cochains of Whitney,

[W, Chapter IXI. The context for the work in this paper is

motivated primarily by the development in the paper by Gurtin,

Williams, and the author referred to above. Moreover, many

of the concepts and techniques related to the Cauchy flux in

this paper originate with [GW] and [GM].

The author is indebted to Morton Gurtin for suggesting

this investigation and would like to thank both Morton Gurtin

and William 0. Williams for several helpful conversations

related to the work in this paper.
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2. Notation and Preliminaries.

We let Rn denote Euclidean n-space and IAI will

ndenote the Lebesgue measure of a measurable set A c R

We denote by Hn- 1 the (n-l)-dimensional Hausdorff measure

defined on Rn. The open ball centered at x of radius r

is denoted by B(x,r) .

If D c Rn , we will let bdry D stand for the topo-

logical boundary of D . In the development of this paper,

the topological boundary of a set plays a small role and will

be replaced by the notion of the measure-theoretic boundary

of D , denoted by D It is defined as

3D = Rn n (x d(D, x) t0 and d(Rn -D ,x) x 0}

where

d(A,x) = lim JA n B(x,r)l
r40 B(x'r)

whenever A c Rn is a measurable set. Clearly, 3D c bdry D .

A bounded measurable set D c Rn is called a set of finite

perimeter if Hn-1(aD) < . Notice that a set D of finite

perimeter may be altered by a set of Lebesgue measure 0 and

still determine the same measure-theoretic boundary 3D

To eliminate this ambiguity, whenever a set D of finite

perimeter is designated, it will be understood that D

denotes the set {x d(D,x) = 1) u 3D . A complete investi-

gation of these sets is presented in [F, Chapter 41. We

. . . . ... . . I .. . £ .. .. " "-
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recall here some of the basic properties of sets of finite

perimeter that will be used in the sequel.

Let D c Rn be a measurable set. Then D has the

unit vector v(D,x) as the measure theoretic exterior normal

at x if, letting

B+(x,r) = B(x,r) n {y : (y-x) - v(D,x) 2 0}

B (x,r) = B(x,r) n {y : (y-x) • v(D,x) 6 0}

we have

lim IB+(x,r) n DI = 0
r+O IB+(x,r)

and

lim IB-(x,r) n DI =1.
r+ IB-(x,r) I

If 3*D denotes the set of points at which the exterior

normal to D at x exists, then clearly D*D c D How-

ever, if D is a set of finite perimeter then

(3) Hn-l[D-3*D] = 0

and

(4) J divV(x) V(x)" v(D,x)dHn-l x)

D 3*D
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whenever V : Rn _. Rn is a Lipschitzian vector field with

compact support, c.f. [F, Theorem 4.5.6]. We also recall

from the same reference that

(5) lim Hnl [(*D) n B(x,r)] =

r4O a(n-l)rnl

for H n - - a.e. x E D*D Here a(n-l) denotes the volume

n-iof the unit ball in Rn  . Further regularity of a*D is

provided by the following result: If D is a set of finite

perimeter, then there exists a countable number of (n-i)

dimensional C1 manifolds M. such that1

(6) Hn - l [*D - u M.] = 0
i=l 1

[F, Theorem 3.2.29].

A useful tool in geometric measure theory is the co-area

formula. It states that if f : Rn . R1  is a Lipschitzian

function, then

(7) -) Hnl[fl(t) n A]dt

A R 1

whenever A c Rn is a measurable set, [F, Theorem 3.2.11].

Later in the paper, we will apply (7) in the following form.

Let x0  R n and let f(x) = Ix-xom . If A c Rn is mea-

surable, then f-1 (t) n A = 3B(x 0 ,t) n A and because

Ivf(x)l = I for all x x0 , it follows from (7) that i
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(8) JAI = J Hn-l[aB(x01 t) n Aldt
R

An oriented surface is a pair (S,v) where S c Rn is

a Borel set and v : Rn _ Rn is a Borel measurable vector

field that are related in the following manner. There is a

(bounded) set D of finite perimeter such that

S c D*D and

(9)

v(x) = v(D,X)Xs(X)

where ×S is the characteristic function of the set S

For simplicity of notation we will denote by S the pair

(S,v) , it being understood that S is oriented by the

exterior normal of some set D of finite perimeter. We

define

(10) -S = (S,-V)

Note that this is meaningful because there is a bounded set

E of finite perimeter such that S c 3*E and -v(x) =

v(E,x)xs(x) . Indeed, the set Rn - D has the property

that 3*(Rn-D) = a*D . However, in our definition of finite

perimeter, we require the set to be bounded. Therefore, if

we let B be an open ball that contains D u (bdry D) , and

define

'_ I



7

E = B n (R -D)

then clearly E is of finite perimeter, S c a*E , and

v(x)= (E,X)Xs(x) .

We say that S= (Slv I) and S = (S2 ,v2) are com-

patible if there is a set D of finite perimeter such that

S 1 c D*D . S2 c (*D v 1l(x) = v(D,X)XS1 (x) , and v2 (x) =

v(D,)X)s 2 (x) . We define S1 u S2 as (S u S2 , v) where

v(x) = v(D,x) suS2(x) and S1 n S2 is defined similarly.

A Cauchy flux is a function Q that assigns to each

oriented surface S = (S,v) a real number and has the fol-

lowing properties:

(11) (i) there is a number K > 0 such that

IQ(S) I -< KHn-i (S) whenever S is an

oriented surface,

(ii) Q(S1 U $2) = Q(SI) + Q(S 2) whenever S1 and

S2 are disjoint, compatible oriented surfaces.

Observe that if D is a set of finite perimeter, it follows

from (i) and (ii) that Q is countably additive on all com-

patible oriented surfaces S c a*D .

A Cauchy flux Q is said to be weakly balanced if there

exists a number M > 0 such that

(12) IQ(3*D) I < MIDI

Ilow
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whenever D is a set of finite perimeter. Here, in keeping

with our convention, the symbol a*D that appears in (13)

denotes the oriented surface (3*D,v) where v(x) =

v(DX)Xa*D(X)

Notice that (12) conceivably allows the possibility of

a*D being the oriented boundary of some other (bounded) set

of finite perimeter, say E . That is, (3*D,v) = (a*E,v1 )

where v (x) = v(E,x)xa*E(X) . This can only happen if the

symmetric difference of D and E had Lebesgue measure

zero, for in the language of geometric measure theory, no

non-trivial n-dimensional integral current (in our case

D - E or E - D ) can have zero boundary, vide [F,§4.5.2].

r

- -. .. - _ _ . A bw. L,.
. . .
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3. The Existence Of A Normal-Dependent Density.

In this section it will be shown that a weakly balanced

Cauchy flux can be essentially described in terms of a field.

If S is an oriented surface, a point x E Rn is called

a point of density of Q on S if the following limit exists:

(13) lim Q[S n B(x,r)]

r O cx(n-l)rnl

Because S is an oriented surface, there is a set D of

finite perimeter such that S c D*D Hence, referring to

(5), we see that

lim Q[S n B(x,r)] - lim Q[S n B(x,r)]

rO a(n-l)r n - I  r4O H n-[S n B(x,r)]

at Hn - 1 - a.e. x E S . We define qS(x) by

(14) qS(x) = lim Q[S n B(x,r)]
rO a (n-l) rn - l

If D is a set of finite perimeter, then by virtue of

(11) and the Radon-Nikodym theorem, there is Borel function

q3D : 3D - R 1 property that

(15) Q(S) = J qaD(x)dHn-1(x)

S

whenever S c *D is an oriented surface. Using again the
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fact that Q is countably additive on compatible elements of

3Dit follows from the general theory of differentiation

[F, §2.91 that

(16) qS()= q x

for H n--a.e.x cS .

We now proceed to extend a result of Noll (N] to our

context of sets of finite perimeter.

3.1 Lemma. If E and B are sets of finite perimeter,

then

Mi 3 (E n B) [(E) n BlAZE n (OB)J - (0E) n (GB]

(ii) a(E n B) c 3E) n B] U[ n (aB) U [OE) n (SB)]

Proof. We prove (i) first. Choose x E (GE) n B-

(DE) n (SB) .Then clearly, d(B,x) = 1 and d*(E,x) > 0

where

d*(E,x) lrn sup J B(x,r)l

* Hence, there is a number a > 0 and a sequence {r.1- 0

such that

Jn B(x,r 1 )I> aIB(x,r i) I i =1,2,....



and

lmIB(X~r~) H 0

But

IE n B(x~r i) I = E n B n B(x,r .) I + LE n(R -_B) n B(x,r 0)

and therefore

d*(E n B , x) > 0

If also d* (E n B , x) < 1 where

d*( n x)= lrn inf JEn B n B(x,r)l

d~(En B, x) r+OB(x,r)l

then it would follow that x E 3(E n B) .If it were not

true that d*(E nB , x) < 1 , then d(E nB ,x) =1 or

what is the same, d[(R E) u (R -B) , x) 0 .This implies

that d(E,x) = 1 which contradicts the fact that x c E

Hence x E a(E n B) .The same conclusion would be reached

if we had taken X E E n (aB) M (E n (aB) and therefore

(i) is established.

In order to establish (ii), let x c a(E n B) .Let

0
B = {x : d(B,x) = 11 and

Be = [x : d(B,x) = 0}
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Then Rn = B0 u B u B Note that x h Be , for otherwise

d(E n B , x) = 0 which contradicts the fact that x E D(E n B)

Thus, x E B u 3B and similarly, x E E u 3E . Hence

3(E n B) c (B0  n E0 ) u (B0  n aE) u (E0  n 3B) u [(E) n (3B)]

Note that [B0 n E0 1 n 3(E n B) = 0 for if x E B0 n E0 ,

then d(E n B , x) = 1 and therefore, x k D(E n B) . This

completes the proof of the lemma.

Rn

3.2 Remark. If E is a set of finite perimeter and x E R

observe that

Hn-I[(OE) n 3B(x,r)] = 0

for all but countably many r , because Hn-I(DE) < and

aB(x,r) n 3B(x,t) = 0 if r = t . To see this, let

A. = {r Hn-l (DE) n aB(x,r)] > i-

A= u A..
i=l

If A were uncountable, then some A. would be uncountable

which would imply that H n-I (DE) = .

3.3 Theorem. To every weakly balanced Cauchy flux Q

n n-l 1corresponds a density function q : R x S R

r ' ,,i, - " 1 " IIII "" " . _
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such that for every oriented surface S = (S,v)

Q(S) = J q(x,v(x))dHn-l (x)

S

Proof. Choose (x,v0) Rn x Sn-i and consider all

oriented surfaces S = (S,o) with the property that x E S

and v(x) = 0 " If x is not a point of density for Q on

any such S , define q(x,v0) = 0 . If x is a point of

density of Q for some S1  (S1IV,) with vl(x) = V0 I set

(17) q(x,v1 (x)) = qSl(x)

We now show that if x is also a point of density of Q on

S= (S2 ,V2 ) with V2 (x) V , then qs(x) = s(x)
2 '221 2

To this end, let D1 and D2 be sets of finite peri-

meter such that S c '*D1 I S c 3*D and v(Dl,X)

v(D 2 ,x) = . From Lemma 3.1 we have

(18) D(D n Br) {(aDI) n B u[(DI - D2 ) n (3Br)]

u[(Dl n D2) n aBr]- [(DI) n (Br ]

(D 2 n Br) c (D 2 ) n B] u [(D2 - D) n (Br)]

u[(Dl n D2 ) n BJu [(D 2 ) n ( Br)j

where, for convenience, we have set B = B(x,r) . It~r
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follows from Remark 3.2 that

n-i n-iH [(3D1) n (3Br)l H [(3D 2) n (Br) = 0,

and therefore that

Q[(3D1 ) n (3B)] = Q[(3D 2) (B)] 0

for all but countably many r > 0 Therefore, it follows

from (18) that

(D I n Br ) =[(,D) n Br] U [(D1 - D2 ) n (3Br)]

u[(D1 n D2 ) n (3Br) u Nl (r) ,

3(D2 n Br ) =r[(D 2 ) Br]u [(D2 - Dl) n (3B)r j

u[(D1 n D2 ) n (B r u N (r)

where Q[N 1 (r)) = Q[N 2 (r)] = 0 for all but countably many

r > 0. Therefore, for all but countably many

r > 0,

(19) Q[()D) n B] - Q[(D 2 ) n Br]

- Qf)(D 1 n Br)] - Q[;A(D 2  Br)]

+ Q[(D 1 - D2) n DBrl - Q[(D 2 - D1 ) n DBr]

I. . . . . .1.-
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A similar equality holds with the subscripts 1 and 2 inter-

changed. In order to prove that qS (x) = s (x) , it is

sufficient to show that for every c > 0 , there exists a

sequence {ri I - 0 such that

(20) IQI(aD ) n Br. - Q[(DD2 ) n Br 1 < cri-1
1 1

for i = 1,2,.... Because of property (12) and (19), it is

sufficient to show that for every c > 0 there is a sequence

{ri } - 0 such that

(21) IQ{(D -D2 ) n (Bi)11 < ern -l and
1 2 r

IQ[(D 2-D I ) n (Br.)]1 < cri1

for i = 1,2 .... .. Because v(Dl,x) = v(D 2 ,x) it follows

that there is R* > 0 such that for 0 < r < R*

n n

(22) Br n (R -D <

IB+ n Dil < E rn i 1,2r T- = 1,

Now let

+ Hn-1 -

(23) Ai (c) = {r : [(DB ) n (D.-D.)] < c/2 r }

r -D < /

n-l < n-iAij({) (r H n-(Br) (Di-D)] c/2 r Ij j C am

S
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Set

AU) A + (c) n A +(c) n A-(E) n A- (C)
A() 1 A2 A21 A12 A21

and suppose

(24) IA(E) n (0,R]l = 0

for some R < R* . Then

+ + .. .
(25) R _ 2 A21 u A 12 u A2 1 1

where, for example, we set Al2 = [O,RJ - A . It follows

from (8) and (23) that

(26) iBR n (Rn-D 1 ) JB . n (D2 -D1 ) I

H -l[()u n (D2 -D )]dr

0

1 -J H- [( B) n (D2-D)dr

A1 2 n [O,R]

n-Ic/2 r

AI12n[O,R]

. ..
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Similar inequalities hold for each of the sets BR rn (Rn-D2)+ +

BR n D , and B n D . Obviously, from (25),
R R 2

(27) f r/2 r n-ldr + E/2 r nIdr

A1 2 n [O,R A1 2 n[O,R]

+ f c/2 rn-ldr + I e/2 rn- dr

A2 1 n[O,R] A2 1 n(0,R]

R

E:/2 rn-dr Rn
f= 2n

0

Thus, one of the integrals in (27), say the first, has the

property that

)I 8 nf /2 rn-dr zt 8n-R

A1 2n [O,R]

Therefore, (26) implies that

BR n (Rn-D 1 ) E-

which contradicts (22). Therefore (24) must be false for

all R such that 0 < R < R* . Consequently, there is a

sequence {ri - 0 such that ri E A(c) for i = 1,2,...

This implies that

Il

.... 3 4
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H [(l HB )n(D -D) <c r.- anid

nil n-iHn-[( )r. n (D2-D 1)H < E r. for i = 1,2,...

In view of property (11(i)), this is sufficient to establish

the validity of (21) and therefore, the proof of the theorem

is complete.

Following the proof of Theorem 1 in [GM], it is easy to

conclude that

(28) Q(S) = -Q(-S)

whenever S 's an oriented surface such that S is contained

in some hyperplane and the topological boundary of S rela-

tive to the hyperplane has fintie Hn - 2 measure. To see this,

assume that the hyperplane is defined by x = 0 , dnd that

S = (S,v) where v(x) (0 , 0,...,l) for x S . For

every E > 0 , let

D S x (0,C]

D = S x [-E,0]
C

Since the topological boundary of S relative to the hyper-

plane xn = 0 has finite Hn - 2 measure, it follows that

Hn-l(bdry D+) < - and Hn-(bdry D ) < . Therefore, both
CC

D and D are sets of finite perimeter and lettingc r
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D D+ D- , we have
C C

(29) Q(D ) + Q(D) - Q(aD) = Q(S) + Q(-S) .

In view of (12) the left side of (29) tends to 0 as c - 0

and therefore (28) is established.

It is in fact possible to prove (28) for any arbitrary

oriented surface S , but this additional information is not

needed in this paper.

We now can employ the results of [GM], particularly

Theorems 3 and 6, to conclude that the density q(x,v) cor-

n
responding to Q in Theorem 3.3 is linear at a.e. x R

We state this as

3.4 Theorem. Let Q be a weakly balanced Cauchy flux

with associated density function q : Rn x Sn- R1 . Then

there exists a measurable vector field q* Rn  Rn  such

that for a.e. x c Rn

q(x,v) = q*(x) • v

whenever v E Sn-.

We now proceed to investigate the divergence (in some

suitable weak sense) of the vector field q* It easily

follows from (11(i)) that there is a constant K such that

.



20

(30) q*(x) 1 K

for a.e. x E Rn

We say that a set I is an n-dimensional closed interval

if I is of the form

I {x : a x. b. , i= 1,2,...,n}

The closed interval I is called admissible if the integral

n-i
(31) q*(x) " v(x)dH n-(x)

exists. Note that almost all intervals I are admissible.

For each admissible interval I , set u(I) equal to the

integral in (31) and defined for x E R,

(32) div*q*(x) = lim sup

where the lim sup is taken over a regular family of admissible

intervals I containing x , (SA, p. 1061. Define div~q*(x,

as the corresponding lim inf and if div~q*(x) = div*q*(x) ,

this common value will be called div q*(x) . Note from (30)

that Idiv q*(x)I 5 K when it exists.

3.5 Lemma. For each admissible interval I ,
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J div*q* ? p(I) -a divq*
I I

Proof. Suppose for some admissible 10 and > 0 ,

that

f div*q*(x)dx < p(I - eli 0 1

10

Let Q be an open bounded set and let f be a lower semi-

continuous function such that f(x) ?t div*q*(x) for x E Rn

and

(33) J f(x) - div*q*(x) < el I0 1

For each admissible Ic ,let

(34) f(I) = J f(x)dx-
I

and observe that, in view of the lower semicontinuity of f ,

6.(x) ' f(x) - div*q*(x) for every x E n . Here, 0.(X)

is defined in a manner similar to that in (32), with lim sup

replaced by lim inf. Thus, it easily follows that 0(I) - 0

for every admissible I c Q , [SA, p. 1901. Therefore from

(33) and (34),

U(I0) 0 f(x)dx !5 div*q*(x)dx + clol0 < I4(10)

10 I
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a contradiction. Thus

I div*q*(x)dx (
I

for each admissible I and similar reasoning yields the

remaining inequality of the lemma.

nWe now show that div q*(x) exists for a e. x E R

To this end, let A be the family of all half-open intervals

J = {x : a x b. , i =1,2,...,n) , and let F denote

the field of all finite unions of intervals J E A and note

that F generates the Borel sets in Rn . If we define

(J) = 0(1)

where I is the closure of J , then is finitely addi-

tive and a theorem of B. Fuglede is now applicable, [FU,

Theorem III]:

In order that there exists an integrable function f

such that

p(J) = f f(x)dx
J

for every J c A , the following two conditions are necessary

and, when combined, sufficient:

(i) For every c > 0 there is a 6 > 0 such that

z
Y I,1,(Jk )I < c for every finite number of

k=l

NO
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intervals J1 ' J2 #..J. from A for which

£<

k=l

(ii) There is a constant C such that C l (Jk)I - C
k=l

for every finite system of disjoint intervals

J I' J2""' J, from A .

Lemma 3.5 implies that conditions (i) and (ii) are satisfied

and therefore

= f f(x)dx
I

for each admissible I c 0 However, standard differen-

tiation theory shows that

div q*(x) = f(x)

for a.e. x . Thus, we have proved

3.6 Lemma. For a.e. x E R , div q*(x) exists and

J div q*(x)dx : f q*(x) v(x)dHnl (x )

I

for almost every interval I

We will conclude by showing that the divergence of q*

in the sense of distributions is equal to the bounded func-

tion, div q*

--- . -a -
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3.7 Theorem. For every test function E C(Q)

f q*(x) • vf(x)dx f J div q*(x)f(x)dx

Proof. Let ' be an open set whose closure is con-

tained in 2 and choose an arbitrary interval I c IV

For each E C0 (Q2) with J = 1 and t > 0 let

Rn

St (x) = t-n  (x/t),

it being understood that only those t > 0 for which t is

less than the distance from R' to R- will be con-

sidered. Define

(div q*)t= (div q*)* t

and q* will denote the vector field whose coordinate func-

tions are those of q* convolved with t

With the help of Lemma 3.6 and Fubini's theorem, we

have

J (div q*)t(x)dx = J div q*(x-y) t(y)dy dx
II Rn

- J div q*(x)t (y)dx dy

Rn y

iJI
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f J q*(x) V(x) t(y)dHn-l(x)dy

Rn aI
R 1y

where I = I - y . From (4) and Fubini's theorem, we havey

Jdiv q = qt*(x) .v(x)dH (x)
I JI

= j q*(x) v(x) t(y)dH n-l(x)dy
Rn I
R n y

Thus, for every I c , we have shown that

(35) Jdiv q*= (div q*)
I I

from which it follows that div q* = (div q*)t a.e. in £'

Now let c c C0 ( 2) and let Q' be as above that con-

tains the support of o . From (35) and Lebesgue's dominated

convergence theorem, we have

J div q* = lim I (div q*) t
t4-0

=limj div q*

= lim q* V

t+o

= J q* • Vo .
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